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ABSTRACT
In this paper, we present an exact active statistics counter archi-
tecture called BRICK (Bucketized Rank Indexed Counters) that
can efficiently store per-flow variable-width statistics counters en-
tirely in SRAM while supporting both fast updates and lookups
(e.g., 40 Gb/s line rates). BRICK exploits statistical multiplexing
by randomly bundling counters into small fixed-size buckets and
supports dynamic sizing of counters by employing an innovative
indexing scheme called rank-indexing. Experiments with Internet
traces show that our solution can indeed maintain large arrays of
exact active statistics counters with moderate amounts of SRAM.

Categories and Subject Descriptors
C.2.3 [COMPUTER-COMMUNICATION NETWORKS]: Net-
work Operations - Network Monitoring

General Terms
Algorithms, Measurement, Performance

Keywords
Statistics Counter, Router

1. INTRODUCTION
It is widely accepted that network measurement is essential for

the monitoring and control of large networks. For implement-
ing various network measurement, router management, and data
streaming algorithms, there is often a need to maintain very large
arrays of statistics counters at wirespeeds (e.g., million counters for
per-flow measurements). For example, on a 40 Gb/s OC-768 link,
a new packet can arrive every 8 ns and the corresponding counter
updates need to be completed within this time. While implement-
ing large counter arrays in SRAM can satisfy performance needs,
the amount of SRAM required for worst-case counter sizes is of-
ten both infeasible and impractical. Therefore, researchers have
actively sought alternative ways to realize large arrays of statistics
counters at wirespeeds [21, 19, 20, 26].
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In particular, several SRAM-efficient designs of large counter
arrays based on hybrid SRAM/DRAM counter architectures have
been proposed. Their baseline idea is to store some lower order
bits (e.g., 9 bits) of each counter in SRAM, and all its bits (e.g.,
64 bits) in DRAM. The increments are made only to these SRAM
counters, and when the values of SRAM counters become close to
overflow, they will be scheduled to be “committed" back to the cor-
responding DRAM counter. These schemes all significantly reduce
the SRAM cost. For example, the scheme by Zhao et al. [26]
achieves the theoretically minimum SRAM cost of between 4 to
6 bits per counter, when the speed difference between SRAM and
DRAM ranges between 10 (50ns/5ns) and 50 (100ns/2ns). How-
ever, in these schemes, while writes can be done as fast as on-
chip SRAM latencies (2 to 5ns), read accesses can only be done
as slowly as DRAM latencies (e.g., 60 to 100ns). Therefore, such
schemes only solve the problem of so-called passive counters in
which full counter values in general do not need to be read out fre-
quently (not until the end of a measurement epoch). Besides the
problem of slow reads, hybrid architectures also suffer from the
problem of significantly increasing the amount of traffic between
SRAM (usually on-chip) and DRAM (usually off-chip) across the
system bus. This may become a serious concern in today’s network
processors, where system bus and DRAM bandwidth are already
heavily utilized for other packet processing functions [26].

While passive counters are good enough for many network mon-
itoring applications, a number of other applications require the
maintenance of active counters, in which the values of counters
may need to be read out as frequently as they are incremented,
typically on a per packet basis. In many network data streaming
algorithms [4, 7, 12, 13, 24, 25], upon the arrival of each packet,
values need to be read out from some counters to decide on ac-
tions that need to be taken. For example, if Count-Min sketch [4]
is used for elephant detection, we need to read the counter values
on a per packet basis because such readings will decide whether a
flow needs to be inserted into a priority queue (implemented as a
heap) that stores “candidate elephants". A prior work on approx-
imate active counters [22] identifies several other data streaming
algorithms that need to maintain active counters, including multi-
stage filters for elephant detection [7] and online hierarchical heavy
hitter identification [24]. Currently, all existing algorithms that use
active counters implement them as full-size SRAM counters. An
efficient solution for exact active counters clearly will save mem-
ory cost for all such applications.

1.1 Our approach and contributions
In this paper, we propose the first solution to the open problem of

how to efficiently maintain exact active counters. Our objective is
to design an exact counter array scheme that allows for extremely
fast read and write accesses (at on-chip SRAM speeds). However,
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these goals will clearly push us back to the origins of using an array
of full-size counters in SRAM if we do not impose any additional
constraint on the counter values. Fast read access demands that the
counters reside entirely in SRAM and we can make the values of
each counter large enough (and random enough) so that each of
them needs the worst-case (full-size) counter size. Therefore we
will solve our problem under a very natural and reasonable con-
straint. We assume that the total number of increments, which is
exactly the sum of counter values in the array, is bounded by a con-
stant M during the measurement interval.

This constraint is a very reasonable constraint for several rea-
sons. First, this constraint is natural since the number of increments
is bounded by the maximum packet arrival rate times the length of
the measurement epoch. We can easily enforce an overall count
sum limit by limiting the length of the measurement epoch. More-
over, this constraint has been assumed in designing other memory-
efficient data structures such as Spectral Bloom Filters [3]. Fur-
thermore, our scheme will work for arbitrarily large M values, al-
though its relative memory savings compared to full-size counters
gets gradually lower with larger M values.

Let N be the total number of counters in the array. Then the ra-
tio M

N
corresponds to the (worst-case) average value of a counter,

which is indeed a more relevant parameter than M for evaluation
purposes, as it corresponds to the “per-counter workload”. We ob-
serve that small M

N
ratio is dictated by many real-world applica-

tions. For example, if we use a Count-Min [4] sketch with ln 1
δ

arrays of e
ε

(e ≈ 2.718) counters each, for estimating the sizes
of TCP/UDP flows, then with probability at least 1 − δ, the CM-
sketch overcounts (it never under-counts) by at most Mε. Sup-
pose we set δ to 0.1 and ε to 10−5 so that we use a total of
ln( 1

0.1
)× e

10−5 ≈ 6.259×105 counters. When the total number of
increments M is set to 108 and correspondingly the average counts
per counter M

N
is approximately 160, we can guarantee that the er-

ror is no more than 1,000 (= 108×10−5) with probability at least
0.9. However, 1,000 are considered very large errors and hence for
practice we always want M

N
to be much smaller.

We emphasize that even when the ratio M
N

is small, it is still
important to figure out ways to save memory, as naive implemen-
tations can be grossly wasteful. For example, let the total counts
be M = 16 million and the number of counters be N = 1 million.
In other words, the average counter value M

N
is 16. Since all incre-

ments can go to the same counter, fixed-counter-size design would
require a conservative counter size of lg(16 × 106) = 24 bits1.
However, as we will show, our scheme can significantly reduce the
SRAM requirement, which is very important for ASIC implemen-
tations where SRAM cost is among the primary costs.

In this paper, we present an exact active counter architecture
called Bucketized (B) Rank (R) Indexed (I) Counter (CK), or
BRICK. It is built entirely in SRAM so that both read and incre-
ment accesses can be processed at tens to hundreds of millions of
packets per second. In addition, since it is stored entirely in SRAM,
it will not introduce traffic between SRAM and DRAM. This makes
it also a very attractive solution for passive counting applications in
which the aforementioned problem of increased traffic over system
bus caused by the hybrid SRAM/DRAM architecture becomes a
serious concern.

The basic idea of our scheme is intuitive and is based on a very
familiar networking concept: statistical multiplexing. Our idea is
to bundle groups of a fixed number (let it be 64 in this case) of
counters, which is randomly selected from the array, into buckets.
We allocate just enough bits to each counter in the sense that if its

1Throughout this paper, lg(x) ≡ log2(x).

Figure 1: BRICK wall (conceptual baseline scheme)

current value is Ci, we allocate blg Cic + 1 bits to it. Therefore,
counters inside a bucket have variable widths. Suppose the mean
width of a counter averaged over the entire array is γ. By the law of
large numbers, the total widths of counters in most of the buckets
will be fairly close to γ multiplied by the number of counters per
bucket. Depicting each counter as a “brick", as shown in Figure 1,
a section of the “brick wall" illustrates the effect of statistical mul-
tiplexing, where each horizontal layer of bricks (consisting of 64 of
them) corresponds to a bucket and the length of bricks corresponds
to the real counter widths encoding flow sizes in a real-world Inter-
net packet trace (the USC trace in Section 4.2).

As we see in this figure, when we set the bucket size to be slightly
longer than 64γ (the vertical dashed line), the probability of the to-
tal widths of the bricks overflowing this line is quite small; among
the 20 buckets shown, only 1 of them has an overflow. Although
overflowed buckets need to be handled separately and will cost
more memory, we can make this probability small and the over-
all overflow cost is small and bounded. Therefore, our memory
consumption only needs to be slightly larger than 64γ per bucket.

This baseline approach is hard to implement in hardware in prac-
tice for two reasons. First, we need to be able to randomly access
(i.e., jump to) any counter with ease. Since counters are of vari-
able sizes, we still need to spend several bits per counter for the
indexing within the bucket. Note being able to randomly access is
difference from being able to delimit all these counters. The lat-
ter can be solved with much less overhead using prefix-free coding
(e.g., Huffman coding) of the counter values. However in this case,
to access the ith counter in a bucket, one has to scan through the
first i − 1 counters (and hence very slow). Second, when the ith

counter (brick) in a bucket grows, counters i + 1, i + 2, ..., 64 will
have to be shifted.

BRICK addresses these two difficulties with a little more overall
SRAM cost. It allows for very efficient read and expansion (for
increments that increase the width of a counter such as from 15 to
16). A key technique in our data structure is an indexing scheme
called rank indexing, borrowed from the compression techniques
in [11, 6, 23, 10]. The operations involved in reading and updat-
ing this data structure are not only simple for ASIC implementa-
tions, but are also supported in modern processors through built-in
instructions such as “shift" and “popcount" so that software imple-
mentation is efficient (as the involved basic operations such as shift
and popcount are supported by modern processors [1, 2]). There-
fore our scheme can be implemented efficiently both in hardware
or software.

1.2 Background and related work
In this section, we compare and contrast our work with previous

approaches. One category of approaches is based on the idea of a
SRAM/DRAM hybrid architecture [21, 19, 20, 26]. The state of art
scheme [26] only requires lg µ bits per counter where µ is the speed
different between SRAM and DRAM. This translates into between
4 to 6 SRAM bits per SRAM counter. However, the read can take
quite long (say at least 100ns). Therefore, these approaches only
solve the passive counting problem.

Another category of approaches is existing active counter solu-
tions [16, 5, 22], which are all based on the approximate counting
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idea invented by Morris [16]. The idea is to probabilistically incre-
ment a counter based on the current counter value. However, ap-
proximate counting in general has a very large error margin when
the number of bits used is small because the possible estimation
values are very sparsely distributed in the range of possible counts.
Therefore, when the counter values are small (say 5), its estimation
can have a very high relative error (well over 100%). This is not
acceptable in network accounting and data streaming applications
where small counter values can be important for overall measure-
ment accuracy. In fact, when the (worst-case) average counter value
M
N

is no more than 128, the SRAM cost of our BRICK scheme
(about 12 bits) is no more than that of [22], which is approximate.

Recently, another counter architecture called counter braids [14]
has been proposed, which is inspired by the construction of LDPC
codes [8] and can keep track of exact counts of all flows with-
out remembering the association between flows and counters. At
each packet arrival, counter increments can be performed quickly
by hashing the flow label to several counters and incrementing
them. The counter values can be viewed as a linear transforma-
tion of flow counts, where the transformation matrix is the result
of hashing all flow labels during a measurement epoch. However,
counter braids are not active and are in fact “more passive" than the
SRAM/DRAM hybrid architectures. To find out the size of a single
flow, one needs to decode all the flow counts through a fairly long
iterative decoding procedure. 2.

Finally, Spectral Bloom Filter [3] has been proposed, which pro-
vides an internal data structure for storing variable width counters.
It uses a hierarchical indexing structure to locate counters that are
packed next to each other, which allows for fast random accesses
(reads). However, an update that causes the width of the counter i
to grow will cause a shift to counters i + 1, i + 2, ..., which can
have a global cascading effect even with some slack bits provided
in between, making it prohibitively expensive when there can be
millions of counters. As acknowledged in [3], although the ex-
pected amortized cost per update remains constant, and the global
cascading effect is small in the average case, the worst-case cannot
be tightly bounded. Therefore, SBF with variable width encod-
ing is not an active counter solution as it cannot ensure fast per-
packet write accesses at every packet arrival, forcing it to become a
mostly-read-only data structure in the sense that updates should be
orders of magnitude less frequent than queries.

The rest of the paper is organized as follows. Section 2 describes
the design of our scheme in detail. Section 3 establishes the tail
probabilities that allow us to bound and optimize the SRAM re-
quirement. Section 4 evaluates our scheme by presenting numer-
ical results on memory costs and tail probabilities under various
parameter settings, including those extracted from real-world traf-
fic traces.

2. DESIGN OF BRICK
In this section, we describe the proposed BRICK counter archi-

tecture. The objective of BRICK is to efficiently encode a set of
N exact active counters C1, C2, . . ., CN , under the constraint that
throughout a network measurement epoch the total counts3 across
all counters

∑N
i=1 Ci is no more than a pre-determined threshold

M , which is carefully justified in Section 1. As we explained ear-
lier, since all increments can go to the same counter, the value of
a counter can be as large as M , and hence the worst-case counter

2In [14], they need 25 seconds on a 2.6GHz computer to decode
the flow counts inside a 6-minute-long traffic trace.
3Here with an abuse of notation, we will use Ci to denote both the
counter and its current count (value).
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Figure 2: Randomly bundling counters into buckets.

width is L = blg Mc + 1. However, it is unnecessarily expensive
to allocate L bits to every counter since only a tiny number of them
will have counts large enough to require this worst-case width while
most others need significantly fewer bits. Therefore, BRICK adopts
a sophisticated variable width encoding of counters and can statis-
tically multiplex these variable width counters through a bucketing
scheme to achieve a much more compact representation. However,
unlike the aforementioned baseline bucketing scheme, BRICK is
extremely SRAM-efficient yet allows for very fast counter lookup
and increment operations.

In the following, we will first present an overview of our pro-
posed design in Section 2.1, followed by how it handles lookups,
increments, and bucket overflows in Sections 2.2 to 2.4, respec-
tively.

2.1 Overview
The basic idea of BRICK is to randomly bundle N counters into

h buckets, B1, B2, . . ., Bh, where each bucket holds k counters
(e.g. k = 64 in practice) and N = hk. In each bucket, some
counters will be long (possibly L bits in the worst-case) and some
will be short, depending on the values they contain. As discussed
earlier, the objective of bundling is to “statistically multiplex" the
variable counter widths in a bucket so that each bucket only needs
to be allocated memory space that is slightly larger than k times the
average counter width (across N counters). Note that since we do
not know the actual average width of a counter in advance, we need
to instead use the average width in the following adversarial con-
text. Imagine that an adversary chooses C1, C2, . . . CN values un-
der the constraint

∑N
i=1 Ci ≤ M that maximizes the metrics (e.g.,

average counter width). We emphasize that such an adversary is de-
fined entirely in the well-established context of randomized online
algorithm design [17] and has nothing to do with its connotation in
security and cryptography.

Fig. 2 depicts these ideas of randomization and bucketization.
In particular, as depicted in Fig. 2(a), to access the yth counter,
a pseudorandom permutation function π : {1. . .N} → {1. . .N}
is first applied to the index y to obtain a permuted index i. This
pseudorandom permutation function in practice can be as simple4

as reversing the bits of y. The corresponding counter Ci can then be
found in the `th bucket B`, where ` = d i

k
e. The bucket structure is

depicted in Fig. 2(b). Unless otherwise noted, when we refer to the
ith counter Ci, we will assume i is already the result of a random
permutation.

4Since the adversary is defined in the online algorithm context dis-
cussed above, we do not believe cryptographically strong pseudo-
random permutations, which may increase our cost and slow down
our operations, are needed here.
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Figure 3: (a) Within a bucket, segmentation of variable-width counters into sub-counter arrays. (b) Compact representation of
variable-width counters. (c) Updated data structure after incrementing C2.

As we explained before, the baseline bucketing scheme does not
allow for efficient read and write (increment) accesses. In BRICK,
a multi-level partitioning scheme is designed to address this prob-
lem as follows. The worst-case counter width L is divided into
p parts, which we refer to as “sub-counters". The jth sub-counter,
j ∈ [1, p] (from the least significant bits to most significant bits) has
wj bits, such that 0 < wj ≤ L and

∑p
j=1 wj = L. To save space,

for each counter, BRICK maintains just enough of its sub-counters
to hold its current value. In other words, counters with values no
more than 2w1+w2+···+wi will not have its (i + 1)th, . . . , pth sub-
counters stored in BRICK. For example, if w1 = 5, any counter
with value less than 25 = 32 will only be allocated a memory en-
try for its 1st sub-counter. Consider the example shown in Fig. 3(a)
with k = 8 counters in a bucket. Only C1 and C5 require more than
their first sub-counters. Such an on-demand allocation requires us
to link together all sub-counters of a counter, which we achieve us-
ing a simple and memory-efficient bitmap indexing scheme called
rank indexing. Rank indexing enables efficient lookup as well as
efficient expansion (when counter values exceed certain thresholds
after increments), which will be discussed in detail in Section 2.2.

Each bucket contains p sub-counter arrays A1, A2, . . ., Ap to
store the 1st, 2nd, . . ., pth sub-counters (as needed) of all k coun-
ters in the bucket. How many entries should be allocated for each
array Ai, denoted as ki, turns out to be a non-trivial statistical op-
timization problem. On the one hand, to save memory, we would
like to make k2, k3, . . ., kp (k1 is fixed as k) as small as possible.
On the other hand, when we encounter the unlucky situation that
we need to exceed any of these limits (say for a certain d, we have
more than kd counters in a bucket that have values larger than or
equal to 2w1+w2+···+wi−1 ), then we will have a “bucket overflow"
that would require that all counters inside the bucket be relocated to
an additional array of full-size buckets with fixed worst-case width
L for each counter, as we will show in Section 2.4. Given the
high cost of storing a duplicated bucket in the full-size array, we
would like to choose larger k2, . . . , kp to make this probability as
small as possible. In Section 3, we develop extremely tight tail
bounds on the overflow probability that allows us to choose param-
eters {ki}2≤i≤p and {wi}1≤i≤p−1 to achieve near-optimal trade-
offs between these two conflicting issues and minimize the overall
memory consumption.

2.2 Rank Indexing
A key technique in our data structure is an indexing scheme that

allows us to efficiently identify the locations of the sub-counters
across the different sub-counter arrays for some counter Ci. In
particular, for Ci, its d sub-counters Ci,1, . . . , Ci,d are spread

across A1, . . . , Ad at locations ai,1, . . . , ai,d, respectively (i.e.,
Ci,j = Aj [ai,j ]). For example, as shown in Fig. 3(b), C5 is spread
across A3[1] = 10, A2[2] = 11, and A1[5] = 11011.

For each bucket, we maintain an index bitmap I . I is divided into
p − 1 parts, I1, . . . , Ip−1, with an one-to-one correspondence to
the sub-counter arrays A1, . . . , Ap−1, respectively. Each part Ij is
a bitmap with kj bits, Ij [1], . . . , Ij [kj ], one bit Ij [a] for each entry
Aj [a] in Aj . Each Ij [a] is used to determine if the counter stored
in Aj [a] has expanded beyond the jth sub-counter array. Ij is also
used to compute the index location of Ci in the next sub-counter
array Aj+1. Because a counter cannot expand beyond the last sub-
counter array, there is no need for an index bitmap component for
the most significant sub-counter array Ap. For example, consider
the entries A1[1] and A1[5] where the corresponding counter has
expanded beyond A1. This is indicated by having the correspond-
ing bit positions I1[1] and I1[5] set to 1, as shown in shaded boxes
in Fig. 3(b). All remaining bit positions in I1 are set to 0, as shown
in clear boxes.

For each counter that has expanded beyond A1, an arrow is
shown in Fig. 3(b) that links a sub-counter in A1 with the corre-
sponding sub-counter entry in A2. For example, for C5, its sub-
counter entry A1[5] in A1 is linked to the sub-counter entry A2[2]
in A2. Rather than expending memory to store these links explic-
itly, which could vanish savings gained by reduced counter widths,
we dynamically compute the location of a sub-counter in the next
sub-counter array Aj+1 based on the current bitmap Ij . This way,
no memory space is needed to store link pointers. This dynamic
computation can be readily determined using an operation called
rank(s, j), which returns the number of ones only in the range
s[1] . . . s[j] in the bit-string s. This operation is similar to the rank
operator defined in [11].

We apply the rank operator on a bitmap Ij by interpreting it as
a bit-string. As we shall see in Sections 3 and 4, our approach is
designed to work with small buckets of counters (e.g. k = 64).
Therefore, the corresponding bit-strings Ij are also relatively short
since all sub-counter arrays satisfy kj ≤ k. Moreover, each succes-
sive kj in the higher sub-counter arrays is substantially smaller than
the previous sub-counter array, with the corresponding reduction in
the length of the bit-string Ij . In turn, the rank operator can be effi-
ciently implemented by combining a bitwise-AND instruction with
another operation called popcount(s), which returns the number
of ones in the bit-string s. Fortunately, the popcount operator is
becoming an increasingly available hardware-optimized instruction
in modern microprocessors and network processors. For example,
current generations of 64-bit x86 processors have this instruction
built-in [1, 2]. Using this popcount instruction, the rank opera-
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tion for bit-strings with lengths up to |s| = 64 bits can be readily
computed in as few as two instructions. As shown with numerical
examples and trace simulations in Section 4, very good results can
be achieved with a bucket size fixed at 64.

The pseudo-code for the lookup operation is shown in Algo-
rithm 1. The retrieval of the sub-counters using rank indexing is
shown in Lines 3-6, with the final count returned at the end of the
procedure. For a hardware implementation, the iterative procedure
can be readily pipelined. As we shall see in Section 4, we only need
a small number of levels (e.g. three) in practice to achieve efficient
results.

Algorithm 1: Pseudo-code
lookup(i)1

Ci = 0; a = i mod k;2
for j = 1 to p3

Ci,j = Aj [a];4
if (j == p or Ij [a] == 0) break;5
a = rank(Ij , a);6

return Ci;7

increment(i)8
a = i mod k;9
for j = 1 to p10

Aj [a] = Aj [a] + 1;11
if (j == p or Aj [a] 6= 0) break; /* last array or no carry */12
if (Ij [a] == 1) /* next level already allocated */13

a = rank(Ij , a);14
else /* expand */15

Ij [a] = 1;16
a = rank(Ij , a);17
b = (a− 1)wj+1 + 1;18
Aj+1 = varshift(Aj+1, b, wj+1);19
Ij+1 = varshift(Ij+1, a, 1);20
Aj+1[a] = 1;21
break;22

2.3 Handling Increments
The increment operation is also based on the traversal of sub-

counters using rank indexing. We will first describe the basic idea
by means of an example. Consider the counter C2 in Fig. 3(b). Its
count is 31, which can be encoded in just the sub-counter array A1

with C2,1 = 11111. Suppose we want to increment C2. We first
increment its first sub-counter component C2,1 = 11111, which
results in C2,1 = 00000 with a carry propagation to the next level.
This is depicted in Fig. 3(c).

This carry propagation triggers the increment of the next sub-
counter component C2,2. The location of C2,2 can be determined
using rank indexing (i.e. rank(I1, 2) = 2). However, the location
of A2[2] was previously occupied by the counter C5. To maintain
rank ordering, we have to shift the entries in A2 down by one to free
up the location A2[2]. This is achieved by applying an operation
called varshift(s, j, c), which performs a right shift on the sub-
string starting at bit-position j by c bits (with vacant bits filled by
zeros). The varshift operator can be readily implemented in most
processors by means of shift and bitwise-logical instructions.

In particular, we can view a sub-counter array Aj as a bit-
string formed by the concatenation of its entries, namely Aj =
Aj [1]Aj [2] . . . Aj [kj ]. The starting bit-position for an entry Aj [a]
in the bit-string can be computed as b = (a − 1)wj + 1, where
wj is the bit-width of the sub-counter array Aj . Consider C5 in
Fig. 3(c). After the shifting operation has been applied, the lo-
cation of its sub-count in A2 will be shifted down by one entry.
Therefore, its corresponding expansion status in I2 must be shifted

down by one position as well. The carry propagation of C2 into A2

is achieved by setting A2[2] = 1.
As with the rank operator, BRICK has been designed to work

with small fixed size buckets so that varshift can be directly
implemented using hardware-optimized instructions. In particular,
varshift only has to operate on A2 or higher. Since the size of
each level decreases exponentially, the bit-strings formed by each
sub-counter array A2 and above are also very short. As the results
show in Section 4, with a bucket size of 64, all sub-counter arrays
A2 and above have a string length at most 64 bits, much less for the
higher levels. Therefore, varshift can be directly implemented
using 64 bit instructions.

The pseudo-code for the increment operation is shown in the
latter part of Algorithm 1. Again, the iterative procedure shown in
Algorithm 1 for increment is readily amenable to pipelining in
hardware. In general, the lookup or update of each successive level
of sub-counter arrays can be pipelined such that at each packet ar-
rival, a lookup or update can operate on A1 while a previous oper-
ation operates on A2, and so forth.

2.4 Handling Overflows
Thus far, we have assumed in our basic data structure that we are

guaranteed that each sub-counter array has been dimensioned to al-
ways provide sufficient entries to store all sub-counters in a bucket.
To achieve greater memory efficiency, the number of entries in the
sub-counter arrays can be reduced so that there is only a very small
probability that a bucket will not have sufficient sub-counter array
entries. As rigorously analyzed in Section 3 and numerically eval-
uated in Section 4, this bucket overflow probability can be made ar-
bitrarily small while achieving significant reduction in storage for
each bucket.

To facilitate this overflow handling, we extend the basic data
structure described in Section 2.1 with a small number of full-size
buckets F1, F2, . . . , FJ . Each full-size bucket Ft is organized as
k full-size counters (i.e., all counters with a worst-case width of L
bits). When a bucket overflow occurs for some B`, the next avail-
able full-size bucket Ft is allocated to store its k counters, where
t is just +1 of the last allocated full-size bucket. An overflow sta-
tus flag f` is set to indicate the bucket has overflowed. The index
of the full-size bucket Ft is stored in a field labeled t`, which is
associated with B`. In practice, we only need a small number of
full-size buckets. As shown in Section 4, for real Internet traces
with over a million counters, only about J ≈ 100 full-size buckets
are enough to handle the overflow cases. Therefore, the index field
only requires a small number of extra bits per bucket (e.g. 7 bits).

Rather than migrating all k counters from B` to Ft` at once, a
counter is only migrated on-demand upon the next increment oper-
ation (“migrate-on-write"). This way, the migration of an overflow
counter to a full-size counter does not disrupt other counter up-
dates. The location of counter Ci in Ft` is simply a = i mod k,
as before. To indicate if counter Ci has been migrated, a migra-
tion status flag gt` [a] is associated with each counter entry Ft` [a]
(i.e. gt` [a] = 1 indicates that the corresponding counter has been
migrated).

The modified lookup operation simply first checks if a counter
from an overflowed bucket has already been migrated, in which
case the full-size count is simply retrieved from corresponding full-
size bucket entry. Otherwise, the counter is retrieved as before.
The modified increment operation is extended in a similar man-
ner. It first checks if a counter from an overflowed bucket has al-
ready been migrated, in which case the full-size counter in the cor-
responding full-size bucket is incremented. If the counter is from
a previously overflowed bucket B`, but it has not been migrated
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yet, then it is read from B`, incremented, and migrated-on-write to
the corresponding location in the full-size bucket. Otherwise, the
counter in B` is incremented as before. Finally, before propagat-
ing a carry to the next level, we first check if all entries in the next
sub-counter array are already being used. If so, the next full-size
bucket is allocated and the incremented count is migrated-on-write
to the corresponding location.

3. ANALYSIS

3.1 Analytical Guarantees
In this section, we bound the failure probability Pf that the num-

ber of overflowed buckets, each of which carries the hefty penalty
of having to be allocated an additional bucket of full-size coun-
ters (as discussed in Section 2.4), will exceed any given threshold
J . We will establish a rigorous relationship between Pf and pa-
rameters k2, k3, ..., kp the number of entries BRICK allocates to
sub-counter arrays A2, ..., Ap (The size of A1 is already fixed to
k) and w1, w2, ..., wp, the widths of an entry in A2, ..., Ap. The
ultimate objective of this analysis is to find the optimal tradeoff be-
tween k2, k3, ..., kp and J that allows us to minimize the amount
of overall memory consumption (h = N/k regular buckets + J
full-size buckets) while keeping the failure probability Pf under
an acceptable threshold (say 10−10 or even smaller). Surprisingly,
the theory of stochastic ordering [18], which seems unrelated to the
context of this work, plays a major role in these derivations.

Recall that the maximum counter width L is partitioned into sub-
counter widths w1, w2, ..., wp. Only counters whose value is larger
than or equal to 2Ld , where Ld is defined as

∑d−1
j=1 wj , will need an

entry in the sub-counter array Ad of a bucket. Since the aggregate
count of all counters is no more than M , we know that there will
be at most md of such counters in the whole counter array, where
md is defined as M2−Ld .

Now imagine at most md such counters are uniformly randomly
distributed into N array locations through the aforementioned in-
dex permutation scheme. We hope that they are very evenly dis-
tributed among these buckets so that very few buckets will have
more than kd of them falling into it (i.e., overflow of Ad). Sup-
pose we dimension Jd full-size buckets to handle bucket overflows
caused by these counters. We would like to bound the probability
that more than Jd buckets will have their Ad arrays overflowed.

We will consider the worst case scenario that there are exactly
md counters needing entries in Ad. If there are less such counters,
the overflow probability will only be smaller, and our tail bound
still applies. For convenience, we denote the percentage of them in
the counter array md

N
as αd.

Let random variables X1,d, X2,d, ..., Xh,d be the number of used
entries in the sub-counter array Ad among the buckets B1, B2, ...,
Bh. Each array location has a probability αd of being assigned one
of the md counters, and there are k array locations in each bucket,
so Xj,d is roughly distributed as Binomial(k, αd) for any j. Here
Binomial(N ,P) is the Binomial distribution with N trials and
P as the success probability of each trial. Therefore, the overflow
probability of level d from any bucket Bj is roughly

εd = Binotailk,αd(kd)

where BinotailN ,P(K) ≡
∑N

z=K+1

(N
z

)
Pz(1 − P)(N−z) de-

notes the tail probability Pr[Z > K], where Z has distribution
Binomial(N ,P).

Intuitively, these random variables are almost independent, as the
only dependence among them seems to be that their total is md. If
we do assume that they are independent, then the probability that

the number of total overflows be larger than Jd entries is roughly

δd = Binotailh,εd(Jd)

Readers understandably will immediately protest this voodoo tail
bound result since the Xj,d’s are not exactly Binomial, and they are
not actually independent. Interestingly, we are able to establish a
rigorous tail bound of 2δd, which is only two times the voodoo
tail bound δd. A similar bound has been established by Mitzen-
macher and Upfal in their book [15] which used independent Pois-
son distributions to bound multinomial distributions (In our case
we use independent binomial distributions to bound X1,d, X2,d,
..., Xh,d), using techniques from stochastic ordering theory [18]
implicitly (i.e., without introducing such concepts).

Based on this rigorous tail bound to be proven in Section 3.2 and
summarizing the overflow events from all the subarrays, we arrive
at the following corollary.

COROLLARY 1. Let parameters δ2, · · · , δp be defined as
above. The failure probability of insufficient full-size buckets,
i.e. that the total number of overflows that need to be moved to
the additional full-size buckets from all subarrays exceeds J =
J2 + · · ·+ Jp, is no more than 2(δ2 + · · ·+ δp).

If given a target worst-case failure probability Pf of insufficient
full-size buckets, e.g. 10−10 or even smaller, an optimization pro-
cedure remains to configure parameters from w1 to wp−1, and k2

to kp, so that we can achieve the best tradeoff for the overall mem-
ory space, which takes into consideration the storage of all sub-
counter arrays, index bitmaps, and all full-size buckets, and even
the blg(J)c + 2 bits for f` and t` in each bucket, which indicate
the migration to full-size buckets.

Given the messy nature of the Binomial distribution, “clean" an-
alytical solutions (e.g., based on Lagrange multipliers) do not exist.
We designed a quick search strategy that can generate near-optimal
configurations. Our evaluation results in Sec 4 are obtained based
on the near-optimal parameter configurations generated by this pro-
cedure. We omit the detail of this procedure in the interest of space.

3.2 Our Main Tail Bound
In this section, we state formally the aforementioned tail bound

theorem (two times the voodoo bound). We would like to state
this theorem using generic parameters that have the same symbol
as before but without the subscript d, since they can be replaced
by the corresponding parameters with subscript d to obtain the tail
bound on the number of overflows from every subarray Ad. In
particular, we will replace md (the number of counters that will
have an entry in sub-counter array Ad) by m, and kd (the number of
entries in sub-counter array Ad) by c, as k has been used to denote
the number of counters in each bucket in the original counter array.
Furthermore, to highlight the general nature of our theorem, we
further detach ourselves from the application semantics by stating
the theorem as follows.

THEOREM 1. m balls are uniformly randomly thrown into h
buckets that has k entries each, with at most one ball in each en-
try. Let N = hk. Let X

(m)
1 , ..., X

(m)
h be the number of balls

that falls into each bucket. Let α = m
hk

and assume α ≤ 1
2

.
Let Y

(α)
1 , ..., Y

(α)
h be independent random variables distributed

as Binomial(k, α). Let f(x1, ..., xh) be an increasing function
in each argument. Then

E[f(X
(m)
1 , ..., X

(m)
h )] ≤ 2E[f(Y

(α)
1 , ..., Y

(α)
h )]

Before we prove this theorem, we need to formally characterize
the underlying probability model and in particular specify precisely
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what we mean by throwing m balls “uniformly randomly” into N
entries as follows. Among all

(
N
m

)
ways of injective mapping from

m balls into N entries, every way happens with equal probability
1

(N
m)

, when these balls are considered indistinguishable. We refer to

this characterization of the underlying probability model as “throw-
ing m balls into N entries in one shot”. It is not hard to verify that
the following process of “throwing m balls into N entries one by
one” results in the same probability model. In this process, at first a
ball is thrown into an entry chosen uniformly from these N entries.
Then another ball is thrown into an entry uniformly picked from
the remaining N − 1 entries, and so on. This equivalent character-
ization of the underlying probability model makes it easier for us
to establish the stochastic ordering relationship among vectors of
random variables in Section 3.3, an essential step for the proof of
Theorem 1. Now we are ready to prove Theorem 1.

PROOF OF THEOREM 1. We use X
(l)
1 , X

(l)
2 , . . . , X

(l)
h when

there are l balls thrown instead of m. In Proposition 1, we
prove that for any l value, µ(X

(l)
1 , X

(l)
2 , . . . , X

(l)
h ) is equivalent to

µ(Y
(α)
1 , Y

(α)
2 , . . . , Y

(α)
h |

∑h
j=1 Y

(α)
j = l), where µ(Z) denotes

the distribution of a random variable or vector Z. In other words,
conditioned upon

∑h
j=1 Y

(α)
j = l, the independent random vari-

ables Y
(α)
1 , Y

(α)
2 , . . . , Y

(α)
h have the same joint distribution as de-

pendent random variables X
(l)
1 , X

(l)
2 , . . . , X

(l)
h . Then we prove in

Proposition 3 that, when l ≤ l′, [X(l)
1 , X

(l)
2 , . . . , X

(l)
h ] is stochasti-

cally less than or equal to (defined later) [X
(l′)
1 , X

(l′)
2 , . . . , X

(l′)
h ].

For any increasing function f(x1, x2, ..., xh), we have

E[f(Y
(α)
1 , ..., Y

(α)
h )]

=

N∑
l=0

E[f(Y
(α)
1 , ..., Y

(α)
h ) |

h∑
j=1

Y
(α)

j = l] Pr[

h∑
j=1

Y
(α)

j = l]

≥
N∑

l=m

E[f(Y
(α)
1 , ..., Y

(α)
h ) |

h∑
j=1

Y
(α)

j = l] Pr[

h∑
j=1

Y
(α)

j = l]

=

N∑
l=m

E[f(X
(l)
1 , ..., X

(l)
h )] Pr[

h∑
j=1

Y
(α)

j = l] (1)

≥
N∑

l=m

E[f(X
(m)
1 , ..., X

(m)
h )] Pr[

h∑
j=1

Y
(α)

j = l] (2)

= E[f(X
(m)
1 , · · · , X

(m)
h )] Pr[

h∑
j=1

Y
(α)

j ≥ m]

= E[f(X
(m)
1 , · · · , X

(m)
h )]BinotailN,α(m− 1)

≥ 1

2
E[f(X

(m)
1 , ..., X

(m)
h )] (3)

Equality (1) is due to Proposition 1, inequality (2) is due to
Proposition 3, and inequality (3) is due to the properties of the 50-
percentile point of Binomial distributions proven in [9].

COROLLARY 2. Let the variable be as defined in Theorem 1.
Let c and J be some constants. Let ε = Binotailk,α(c). Then

Pr[

h∑
j=1

1{X
(m)
j >c} > J ] ≤ 2Binotailh,ε(J)

PROOF. Consider function f(x1, x2, · · · , xh) ≡
1{

∑h
j=1 1{xj>c}>J}, which is an increasing function of x1,

..., xh. From Theorem 1 we have Pr[
∑h

j=1 1{X
(m)
j >c} >

J ] ≤ 2Pr[
∑h

j=1 1{Y
(α)
j >C} > J ]. Since {1{Y

(α)
j >c}}1≤j≤h

are independent Bernoulli random variables with probability
ε = Binotailk,α(c), their sum is distributed as Binomial(h, ε).
Therefore Pr[

∑h
j=1 1{Yj>c} > J ] is equal toBinotailh,ε(J).

3.3 Proofs of propositions 1–3
PROPOSITION 1. µ(X

(l)
1 , X

(l)
2 , . . . , X

(l)
h )

= µ(Y
(α)
1 , Y

(α)
2 , . . . , Y

(α)
h |

∑h
j=1 Y

(α)
j = l)

PROOF. It suffices to prove that for any nonnegative integers
l1, l2, ..., lh that satisfy

∑h
j=1 lj = l, Pr[X

(l)
1 = l1, X

(l)
2 =

l2, . . . , X
(l)
h = lh] = Pr[Y

(α)
1 = l1, Y

(α)
2 = l2, . . . , Y

(α)
h =

lh |
∑h

j=1 Y
(α)

j = l]. We show that both the LHS (left hand side)
and the RHS (right hand side) are equal to(

k
l1

)(
k
l2

)
· · ·
(

k
lh

)(
N
l

) (4)

Since there are
(

N
l

)
ways of selecting l entries out of a total of

N entries, and each way happens with equal probability 1

(N
l )

, the

LHS is equal to (4) because there are
(

k
l1

)(
k
l2

)
· · ·
(

k
lh

)
ways among

them that result in the event {X(l)
1 = l1, X

(l)
2 = l2, . . . , X

(l)=lh
h }.

Now we prove that the RHS is equal to (4) as well. Since Y
(α)
1 ,

Y
(α)
2 , . . ., Y (α)

h are independent random variables with distribution
Binomial(k, α),

∑h
j=1 Y

(α)
j has distribution Binomial(N, α)

and therefore

Pr[

h∑
j=1

Y
(α)

j = l] =

(
N

l

)
αl(1− α)N−l (5)

Additionally, when
∑h

j=1 Y
(α)

j = l, we have

Pr[Y
(α)
1 = l1, Y

(α)
2 = l2, . . . , Y

(α)
h = lh,

h∑
j=1

Y
(α)

j = l]

=

h∏
j=1

(
k

lj

)
αlj (1− α)k−lj

= αl(1− α)N−l
h∏

j=1

(
k

lj

)
(6)

Combining (5) and (6) we obtain that the RHS is equal to (4) as
well.

Stochastic ordering is a way to compare two random variables.
Random variable X is stochastically less than or equal to random
variable Y , written X ≤st Y , iff Eφ(X) ≤ Eφ(Y ) for all increas-
ing functions φ such that the expectations exits. An equivalent def-
inition of X ≤st Y is that Pr[X > t] ≤ Pr[Y > t],−∞ <
t < ∞. The definition involving increasing functions also ap-
plies to random vectors X = (X1, ..., Xh) and Y = (Y1, ..., Yh):
X ≤st Y iff Eφ(X) ≤ Eφ(Y ) for all increasing functions φ such
that the expectations exits. Here φ is increasing means that it is
increasing in each argument separately with other arguments being
fixed. This is equivalent to φ(X) ≤st φ(Y ). Note this definition
is a much stronger condition than Pr[X1 > t1, ..., Xh > th] ≤
Pr[Y1 > t1, ..., Yh > th] for all t = (t1, ..., th) ∈ Rn.

Now we state without proof a fact that will be used to prove
Proposition 3. Its proof can be found in all books that deal with
stochastic ordering [18].
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PROPOSITION 2. Let X and Y be two random variables (or
vectors). X ≤st Y iff there exists X ′ and Y ′ such that µ(X ′) =
µ(X), µ(Y ′) = µ(Y ), and Pr[X ′ ≤ Y ′] = 1.

Now we are ready to prove the following proposition.

PROPOSITION 3. For any 0 ≤ l < l′ ≤ N , we have
[X

(l)
1 , X

(l)
2 , . . . , X

(l)
h ] ≤st [X

(l′)
1 , X

(l′)
2 , . . . , X

(l′)
h ].

PROOF. It suffices to prove it for l′ = l + 1. Our idea is to
find random variables Z and W such that Z has the same dis-
tribution as [X

(l)
1 , X

(l)
2 , . . . , X

(l)
h ], W has the same distribution

as [X
(l+1)
1 , X

(l+1)
2 , . . . , X

(l+1)
h ], and Pr[Z ≤ W ] = 1. We

will use the aforementioned probability model that is generated
by “throwing m balls into N entries one-by-one" random process.
Now given any outcome ω in the probability space Ω, let Z(ω) =
[Z1(ω), Z2(ω), ..., Zh(ω)], where Zj(ω) is the number of balls in
the jth bucket after we throw l balls into these N entries one by
one. Now with all these l balls there, we throw the (l + 1)th ball
uniformly randomly into one of the remaining empty entries. We
define W (ω) as [W1(ω), W2(ω), ..., Wh(ω)], where Wj(ω) is the
number of balls in the jth bucket after we throw in the (l + 1)th

ball. Clearly we have Z(ω) ≤ W (ω) for any ω ∈ Ω and there-
fore Pr[Z ≤ W ] = 1. Finally, we know from the property of the
“throwing m balls into N entries one-by-one" random process that
Z and W have the same distribution as [X

(l)
1 , X

(l)
2 , . . . , X

(l)
h ] and

[X
(l+1)
1 , X

(l+1)
2 , . . . , X

(l+1)
h ] respectively.

4. PERFORMANCE EVALUATIONS
We first present in Section 4.1 numerical examples of our tail

bounds derived in Section 3 under a set of typical parameter con-
figurations. Our results show that BRICK is extremely memory-
efficient. Our results show that the number of extra bits needed per
counter in addition to the (loose) intuitive lower bound lg M

N
de-

rived under reasonable assumptions (explained later) remains prac-
tically constant with increasing number of flows N , and hence the
solution is scalable. The results also show that the number of extra
bits needed per counter is not far from the information-theoretic
lower bound (tighter and 1.5 bits larger than the intuitive lower
bound). We then evaluate in Section 4.2 the performance of our
architecture using parameters (e.g., M and N ) extracted from real-
world Internet traffic traces. Finally, we discuss implementation
issues in Section 4.3.

4.1 Numerical results of analytical bounds

4.1.1 Memory costs and lower bounds
For a configuration of these parameters, the amount of memory

required can be computed as follows:

S` =

([
p∑

j=1

kj(wj + 1)

]
− kp

)
+ (blg Jc+ 2) (7)

S =

(
h∑

`=1

S`

)
+ Jk (L + 1) (8)

Here S` is the memory cost of each bucket; its first component
corresponds to the space required for storing the sub-counter arrays
and the index bitmaps, and its second component corresponds to
the overflow status flag and the index to the corresponding full-size
bucket5. Then the total memory cost S is h = dN

k
e buckets of

5Since there are J full-size buckets, this index can be stored in
blg Jc+ 1 bits.

Table 1: Sub-counter array sizing and per-counter storage for
k = 64 and Pf = 10−10.

(a) Sizing of sub-counter arrays.
p k2 k3 k4 k5 w1 w2 w3 w4 w5

3 15 3 lg M
N

+ 3 4 13
4 25 10 2 lg M

N
+ 2 2 4 12

5 25 10 3 1 lg M
N

+ 2 2 3 4 9

(b) Size of each sub-counter array = kj × wj (in bits).

p A2 A3 A4 A5

3 15× 4 = 60 3× 13 = 39
4 25× 2 = 50 10× 4 = 40 2× 12 = 24
5 25× 2 = 50 10× 3 = 30 3× 4 = 12 1× 9 = 9

(c) Storage per counter.
p = 3 p = 4 p = 5

lg M
N

+ 6.05 lg M
N

+ 5.66 lg M
N

+ 5.50

size S` each plus J full-size buckets of size k(L + 1) each. (For
each full-size counter of size L, we need 1 bit for indicating the
migration status.)

For comparison purposes, we derive two lower bounds on the
minimum memory requirement per counter under the aforemen-
tioned constraint that the sum of counter values C1, C2, ..., CN

(i.e., the total number of increments) is no more than M . The first
lower bound lg M

N
is intuitive yet loose. It corresponds to only the

number of bits we need to store these counters when each counter
has the same value M

N
. This bound is clearly very loose since

it does not account for the extra bits needed (1) to delimit these
counter values and (2) to allow for fast random accesses, when
counter values are not uniformly M

N
. We will show that we are

able to achieve both (1) and (2) in between 5 to 6 bits per counter
in the worst case.

The second lower bound is the maximum empirical entropy of
all the counter values C1, C2, ..., CN , subject to the constraint∑N

i=1 Ci ≤ M . We omit its detailed (standard information-
theoretic) definition, formulation, and solution (through Lagrange
multipliers) in the interest of space. Note that this information-
theoretic lower bound is in general not achievable in our case for
two reasons. First, although prefix-free coding (such as Huffman)
of each counter allows us to get very close to this lower bound and
settles the aforementioned counter delimiting problem, it does not
allow for fast random accesses. Second, no prefix-free coding ex-
ists that can reach this bound with probability 1 without knowing
the distribution of counter values in advance (even for infinite block
size). We will show that we are within 4 bits away from this infor-
mation theoretic lower bound. In other words, these 4 extra bits
per counter allow us to achieve fast random access given arbitrary
unknown distributions of counter values.

4.1.2 Numerical results with various configurations
Comparing with the first lower bound, lg M

N
, the number of extra

bits per counter that our solution adds is σ = (S/N)− lg(M/N).
We use σ as a metric to evaluate the space efficiency of our solution.

Here we only present results for the case with k = 64 counters
per bucket, which could ensure that all string operations are within
64 bits and allow for direct implementations using 64-bit instruc-
tions in modern processors [1, 2]. As we shall see, substantial sta-
tistical multiplexing can already be achieved with k = 64. For
the results presented in Table 1, we used representative parameters
with N = 1 million counters and M = 16 million as the maxi-
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Table 2: Information-theoretic lower bound.
lg(M

N
)= 2 4 6 8

Avg Entropy=lg M
N

+ 1.61 1.49 1.45 1.45

mum total increments during a measurement period. We also set
the failure probability to be Pf = 10−10, which is a tiny probabil-
ity corresponding to an average of one failure (when there are more
than J overflowed buckets) every ten thousand years. We will later
show in Figures 4, 5, and 6 that the additional per-counter storage
cost beyond the minimum width of the average count is practically
a constant unrelated to the number of flows N , the maximum total
increments M , or the failure probability Pf .

In Table 1(a), the number of entries and the width for each sub-
counter array are shown for BRICK implementations with vary-
ing number of levels p. As can be seen, in each design, the num-
ber of entries decreases exponentially as we go to the higher sub-
counter arrays. This is the main source of our compression. With
k = 64, the rank indexing operation described in Section 2 only
needs to be performed on bitmaps with |Ij | ≤ 64 bits (much less
than 64 for the higher sub-counter arrays) and can be directly im-
plemented using 64-bit popcount and bitwise-logical instructions
that are available in modern processors [1, 2]. Table 1(b) shows
the size of each sub-counter array. For all three designs, the space
requirement for each sub-counter array other than A1 is also less
than 64 bits. Therefore, the “varshift" operator described in Sec-
tion 2.3, which only needs to operate on A2 and higher, can be
directly implemented using 64-bit shift and bitwise-logical instruc-
tions as well.

In Table 1(c), the per-counter storage cost for the three designs
are shown. For three levels, the extra storage cost per counter is
6.05, and the extra storage costs per counter are 5.66 and 5.50 for
four and five levels, respectively. The amount of extra storage only
decreases slightly with additional levels in the BRICK implementa-
tion. For example, as we go from three to five levels, the reduction
of 6.05− 5.50 = 0.55 extra bits is only about 5.5% in the overall
per-counter cost if lg M

N
= 4.

In Figures 4, 5, and 6 we evaluate the impact of different N , M ,
and Pf , where we use k = 64 and p = 4.

Figure 4 shows that the added per-counter cost remains practi-
cally constant as we increase N exponentially by powers of 10.
Similarly, Figure 5 shows that the added cost also remains prac-
tically constant with different ratios of M and N . These results
show that BRICK is scalable to different values of M and N with
per-counter storage cost within approximately a constant factor
from the minimum width of the average count. Figure 6 shows
the impact of decreasing failure probability. We show results for
Pf = 10−10 down to 10−20. Again, we see that the change in
storage cost is negligible with decreasing failure probability, which
means BRICK can be optimized to vanishingly small failure prob-
abilities with virtually no impact on storage cost.

Finally, in Table 2, we explore the question “How far is our solu-
tion from the theoretically optimum solution (i.e., the second lower
bound above)?". We can see that our scheme is only within 4 bits
away from that theoretical bound.

4.2 Results for real Internet traces
In this section, we evaluate our active counter architecture us-

ing real-world Internet traffic traces. The traces that we used were
collected at different locations in the Internet, namely University
of Southern California (USC) and University of North Carolina
(UNC), respectively. The trace from USC was collected at their
Los Nettos tracing facility on February 2, 2004, and the trace from
UNC was collected on a 1 Gbps access link connecting to the cam-

Table 3: Percentage of full-size buckets.
Trace h J J

h

USC 17.3K 111 0.60%
UNC 19.5K 104 0.57%

pus to the rest of the Internet on April 24, 2003. For each trace, we
used a 10-minute segment, corresponding to a measurement epoch.
The trace segment from USC has 18.9 million packets and around
1.1 million flows; the trace segment from UNC has 32.6 million
packets and around 1.24 million flows.

We use the same parameter settings as the evaluations in Sec-
tion 4.1 with 64 counters per bucket, four levels, and a failure prob-
ability of Pf = 10−10. The total storage space required for the
USC trace is 1.39 MB, and the total required for the UNC trace
is 1.63 MB. In comparison, a naive implementation would require
a worst-case counter width for all counters. Both traces require a
worst-case width of 25 bits, whereas the BRICK implementations
require a per-counter cost of about 10 bits. The total storage re-
quired for a naive implementation is 3.85 MB for the USC trace
and 4.40 MB for the UNC trace. The BRICK implementations rep-
resent a 2.5x improvement in both cases. This is very exciting since
with the same amount of memory, we will be able to squeeze in 2.5
times more counters, which is badly needed in future faster and
“more crowded” Internet!

Table 3 shows the number of full-size buckets derived using our
tail bounds in comparison to the number of buckets for each of the
two traces. In practice, only a small number of full-size buckets
are needed to guarantee a tiny probability (Pf = 10−10) that we
will have insufficient number of full-size buckets to handle bucket
overflows.

4.3 Implementation issues
In a BRICK implementation, all sub-counter arrays (Aj) and in-

dex bitmaps (Ij) are fixed in size, and the number and size of buck-
ets are also fixed. Consider the three level case shown in Table 1
with k = 64. Both lookup and increment operations can be per-
formed with 10 memory accesses in total, 5 reads and 5 writes. For
the bucket being read or updated, we first retrieve all bitmaps (Ij),
bucket overflow status flag f`, and an index field t` to a full-size
bucket in case a bucket overflow has previously occurred. All this
information for a bucket can be retrieved in two memory reads with
64-bit words, the first word corresponds to I1 with 64-bits, and the
second word stores I2 = 3 bits, the overflow status flag, and the
t` (about 7 bits). If f` is not set, then we need up to three reads
and writes to update the three levels of sub-counter arrays. The up-
dated index bitmaps and overflow status flags can be written back in
two memory writes. If f` has been set, then we read directly from
the corresponding entry in the full-size bucket indicated by t` for a
lookup operation, avoiding the need to read the sub-counter arrays,
hence requiring fewer memory acceses. Similarly, an increment op-
eration for a counter that is already in a full-size bucket takes only
one read and one write to update. If a bucket overflow occurs during
an increment of a counter in a bucket, there is no need to access the
last sub-counter array (otherwise, we wouldn’t have an overflow).
Therefore, we save two memory accesses at the expense of one
write to the full-size bucket. With index bitmaps, overflow status
flag, and full-size index field packed into two words, the worst case
number of memory accesses is 10 in total, which permits updates
in 20ns with a 2ns SRAM time, enabling over 15 million packets
per second of updates.

BRICK is also amenable to pipelining in hardware. In general,
the lookup or update of each successive level of sub-counter arrays
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can be pipelined such that at each packet arrival, a lookup or update
can operate on A1 while a previous operation operates on A2, and
so forth. This enables the processing of hundreds of millions of
packets per second.

5. CONCLUSION
We presented a novel exact active statistics counter architecture

called BRICK (Bucketized Rank Indexed Counters) that can very
efficiently store large arrays of variable width counters entirely in
SRAM while supporting extremely fast increments and lookups.
This high memory (SRAM) efficiency is achieved through a sta-
tistical multiplexing technique, which by grouping a fixed number
of randomly selected counters into a bucket, allows us to tightly
bound the amount of memory that needs to be allocated to each
bucket. Statistical guarantees of BRICK are proven using a com-
bination of stochastic ordering theory and probabilistic tail bound
techniques. We also developed an extremely simple and memory-
efficient indexing structure called rank-indexing to allow for fast
random access of every counter inside a bucket. Experiments with
real-world Internet traffic traces show that our solution can indeed
maintain large arrays of exact active statistics counters with mod-
erate amounts of SRAM.
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